$[M_4O_{12}{MeC(NH_2)NO}_2]^{2-}$ (M = Mo or W), a Tetranuclear Complex with a μ_4 -Acetamidoximate Ligand as an Unprecedented Bridge

Valérie Chilou, Pierre Gouzerh, Yves Jeannin,* and Francis Robert

Laboratoire de Chimie des Métaux de Transition, UA-CNRS 419, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France

Salts of $[M_4O_{12}{MeC(NH_2)NO}_2]^2$ with M = Mo or W have been synthesized and characterised by X-ray diffraction.

In view of the perceived analogies between isopolymetalates and metal oxide surfaces, the co-ordination chemistry of isopolymetalates with small organic molecules is of current interest,¹ as demonstrated by reports on the anions $[Mo_8O_{24}(OMe)_4]^{4-}$,² $[(HCO)_2Mo_8O_{28}]^{6-}$,³ $[(H_2CO_2)-Mo_4O_{12}(OH)]^{3-}$,⁴ (acac = pentane-1,4-dione) and $[(C_5H_5N)_2Mo_8O_{26}]^{4-}$.⁵ We have recently observed the reaction of acetamidoxime with $[MoO_2(acac)_2]$, yielding the unexpected compound $[Mo(acac)_2NO\{MeC(NH_2)NO\}]$.⁶ Looking for other reactions in which acetamidoxime could behave as a nitrosylating reagent, we found that acetamidoxime reacts with $[Mo_6O_{19}]^{2-}$ and with α - $[Mo_8O_{26}]^{4-}$ to yield the new polymolybdate $[Mo_4O_{12}\{MeC(NH_2)NO\}_2]^{2-}$; the same complex is obtained starting from $[W_6O_{19}]^{2-}$.

A solution of $(NBu_4)_4[Mo_8O_{26}]$ (4.305 g) and MeC-(NH₂)NOH (2.369 g) in MeCN (100 ml) was refluxed for 1.5 h. $(NBu_4)_2[Mo_4O_{12}\{MeC(NH_2)NO\}_2]$ (1a) was deposited as colourless parallelepiped crystals within 2 days in 90% yield (based on Mo). The reaction can also be carried out in methanol, leading to the solvat $(NBu_4)_2[Mo_4O_{12}\{MeC(NH_2)-NO\}_2]\cdot 2MeOH$ (1b), which is also obtained from $(NBu_4)_2$ -[Mo₆O₁₉] and acetamidoxime in methanol and from the slow reaction of $(NBu_4)_2[Mo_4O_8(OMe)_2(N_2C_6H_5)_4]^7$ with an excess of acetamidoxime in methanol.

The reaction of acetamidoxime with $[MoO_2(acac)_2]$ first produces orange crystals of $[Mo(acac)_2\{MeC(NH_2)-NO\}(NO)]$, in *ca.* 30% yield.⁶ After several days crystals of $[MeC(NH_2)NHOH]_2[Mo_4O_{12}\{MeC(NH_2)NO\}_2]$ (1c) are deposited (yield 8%). $[Mo_4O_{12}\{MeC(NH_2)NO\}_2]^{2-}$ was also

Table 1. Principal bond lengths (Å) and angles (°).

	(1 a)			
~	Unit 1	Unit 2	(1c)	(2)
M(1) - O(1)	1.705(3)	1.719(3)	1.710(4)	1.747(9)
M(1) - O(2)	1.698(3)	1.700(3)	1.724(3)	1.726(8)
M(2) - O(3)	1.717(3)	1.701(3)	1.690(4)	1.738(8)
M(2) - O(4)	1.701(3)	1.705(3)	1.714(4)	1.712(8)
M(1) - O(5')	1.899(3)	1.886(3)	1.887(4)	1.872(8)
M(1)-O(6)	1.936(3)	1.917(3)	1.926(3)	1.901(8)
M(2)-O(5)	1.900(3)	1.921(3)	1.891(4)	1.910(8)
M(2)-O(6)	1.925(3)	1.943(3)	1.957(3)	1.943(8)
M(1)-O(7)	2.200(2)	2.158(3)	2.202(3)	2.192(8)
M(2)-O(7)	2.215(2)	2.222(3)	2.202(3)	2.215(8)
M(1) - N(2')	2.572(3)	2.758(3)	2.476(4)	2.54(1)
M(2)-N(2')	2.578(3)	2.405(3)	2.598(4)	2.50(1)
N(2)-C(1)	1.298(5)	1.328(5)	1.328(7)	1.33(1)
N(2)-O(7)	1.420(4)	1.418(4)	1.428(5)	1.42(1)
C(1) - N(1)	1.334(5)	1.311(6)	1.312(7)	1.31(2)
C(1)-C(2)	1.490(6)	1.486(6)	1.487(8)	1.49(2)
O(1)-M(1)-O(2)	104.1(1)	104.1(1)	103.9(2)	102.8(4)
O(3)-M(2)-O(4)	105.0(1)	105.0(2)	105.0(2)	104.9(4)
O(6)-M(1)-O(5')	143.5(1)	140.8(1)	145.3(1)	144.0(4)
O(6)-M(2)-O(5)	142.8(1)	145.2(1)	142.3(1)	141.6(3)

unexpectedly formed from the reaction of (NBu_4) [MeC-(NO)NO] (0.312 g) with [MoO₂(acac)₂] (0.162 g) dissolved in methanol (10 ml). The brown solution progressively turned yellow-orange, and crystals of (1b) were deposited within 2 days.

 $[W_4O_{12}\{MeC(NH_2)NO\}_2]^{2-}$ was prepared from $(NBu_4)_2[W_6O_{19}]$ (3.788 g) added to $MeC(NH_2)NOH$ (1.776 g) in MeOH (25 ml); the mixture was refluxed for 20 h. $(NBu_4)_2[W_4O_{12}\{MeC(NH_2)NO\}_2]\cdot 2MeOH$ (2) was produced in 60% yield (based on W).

Compounds (1a-c), and (2) gave satisfactory analytical results; (1a) and (1c) are air-stable but the methanol addition compounds (1b) and (2) slowly lose methanol.

$$(NBu_4)_2[Mo_4O_{12}\{MeC(NH_2)NO\}_2]$$
(1a)

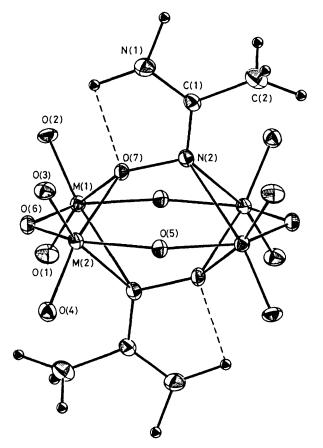
$$\frac{(\text{NBu}_4)_2[\text{Mo}_4\text{O}_{12}\{\text{MeC}(\text{NH}_2)\text{NO}\}_2]\cdot 2\text{MeOH}}{(1\mathbf{b})}$$

$$\frac{[MeC(NH_2)NHOH]_2[Mo_4O_{12}{MeC(NH_2)NO}_2]}{(1c)}$$

$$(NBu_4)_2[W_4O_{12}\{MeC(NH_2)NO\}_2]\cdot 2MeOH$$
(2)

The complexes (1a), (1c), and (2) all contain similar centrosymmetrical tetranuclear $[M_4O_{12}\{MeC(NH_2)NO\}_2]^{2-}$ anions.[†] The structure of these tetrametalates is based upon a

† Determinations of cell constants and data collection were carried out at room temperature with Mo- K_{α} radiation with a Nonius CAD4 diffractometer equipped with a graphite monochromator. Unit cell dimensions were obtained by a least-squares fit of 25 reflections in the range 14 < θ < 17 °C. Data were recorded by θ -2 θ scan in the range 1.0 < θ < 25 °C and were corrected for Lorentz-polarization effects; an empirical absorption correction based upon ψ scan was applied. In the case of (2), data were corrected for decay. All calculations were performed with the program CRYSTALS.¹⁸


Crystal data: (1a) $C_{36}H_{82}N_6O_{14}Mo_4$, M = 1206.84, triclinic, $P\overline{I}$, a = 8.902(4), b = 18.052(2), c = 16.546(3) Å, $\alpha = 92.60(1)$, $\beta = 102.32(2)$, $\gamma = 93.08(2)^\circ$, U = 2590(2) Å³, Z = 2; 8121 independent reflections measured, 6426 with $I > 3\sigma(I)$, R = 0.031, $R_w = 0.033$.

(1c) $C_8H_{24}N_8O_{16}Mo_4$, M = 872.08, triclinic, $P\overline{1}$, a = 7.709(3), b = 8.819(5), c = 9.665(2) Å, $\alpha = 75.29(2)$, $\beta = 86.98(2)$, $\gamma = 67.69(3)^\circ$, U = 587.3(1) Å³, Z = 1; 2067 independent reflections measured, 1651 with $I > 3\sigma(I)$, R = 0.039, $R_w = 0.037$.

(2) $C_{38}H_{90}N_6O_{16}W_4$, M = 1622.56, monoclinic, $P2_1/c$, a = 8.955(1), b = 19.414(2), c = 15.585(2) Å, $\beta = 91.24(1)^\circ$, U = 2708.9(9) Å³, Z = 2; 5104 independent reflections measured, 3298 with $I > 3\sigma(I)$, R = 0.038, $R_w = 0.040$.

Structures were solved by Patterson and Fourier methods. Hydrogen atoms were located on difference Fourier maps. They were isotropically refined [overall refined thermal parameters in (1c); arbitrarily fixed thermal parameters in (1b) and (2)]. Refinement was performed by full-matrix least-squares techniques for (1c) and (2), in two blocks for (1b).

Atomic co-ordínates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Figure 1. ORTEP drawing of $[W_4O_{12}{MeC(NH_2)NO}_2]^{2-}$ (2) showing 20% probability thermal ellipsoids. Hydrogen thermal parameters have been constrained to isotropy: B = 1.0 Å².

ring of four corner-shared MoO₄ tetrahedra; to this ring, two bridging acetamidoxime ligands are added so that each metal atom becomes octahedrally surrounded. Such a ring has been found in $[(H_2CO_2)Mo_4O_{12}(OH)]^{3-,4}$ in $[\{Me_2AsO_2\}-Mo_4O_{12}(OH)]^{3-,8}$ and in $[Mo_4O_{12}(O_2)_2]^{4-;9}$ however such a structure seems unprecedented for tungsten although few tetranuclear tungsten species have been described.^{10,11}

A unique feature of the present structures is the bonding of the acetamidoxime ligand. Such μ_4 -bonding by the oxime group with N and O ligated to two metal atoms is novel not only with amidoximes but also with oximes. Indeed oximate groups are known to bridge two metal atoms,^{12,13} but no example is known with four metal atoms. The oxime nitrogen atom is in a rather unusual situation. The two C-N distances within the ligand are approximately equal and indicate some double-bond character (average C-N = 1.319 Å; see Table 1), while the N-O distance is typical of a single bond (average N-O = 1.421 Å; see Table 1). Thus the oxime nitrogen atom seems too electron-deficient to form two Mo-N bonds (average Mo-N = 2.553 Å; see Table 1). Typical Mo-N distances are in the range 2.34-2.39 Å; for example in [Mo₄O₁₂(C₁₂H₃₀N₄S₂)].¹⁴

The complexes (2) and (1b) are isostructural; precession photographs show that lattice constants and unit cell symmetry are the same. Structure (1a) reveals a surprising feature: the unit cell contains two crystallographically independent tetranuclear units. One of them has a pseudo-mirror plane perpendicular to the Mo_4O_4 ring; the second has not. Consequently Mo–N and Mo–O distances become asymmetric in the second; the situation is similar in (1c) although not so marked.

In all these tetrametalates, the acetamidoximate ligand is nearly planar, with the exception of the CH₃ hydrogen atoms. This favours a weak intramolecular $N(1)H(11) \dots O(7)$ interaction, which also occurs in free amidoximes^{15,16} and in other complexes of acetamidoxime.^{6,17} A similar interaction also exists in the cation [MeC(NH₂)NHOH]+ of (1c); incidentally, the cation structure reveals that amidoxime protonation occurs on the oxime nitrogen atom. There are also intermolecular hydrogen bonds. In (1c), anions and cations are connected by one OH ... O and two NH ... O hydrogen bonds; each cation is linked to three different tetranuclear units [O(47) ... O(2) 2.702(6) Å, N(42) ... O(6) 2.804(6) Å, $N(41) \dots O(1) 2.813(7) Å$]. In (1b) and (2), the shortest intermolecular contacts are between the nitrogen NH₂ atom and an M=O oxygen atom of another tetranuclear unit $[N(1) \dots O(3) 2.968(5) \text{ Å and } N(21) \dots O(21) 2.842(5) \text{ Å in}$ (1b), $N(1) \dots O(3) 2.89(1)$ Å in (2)]. The location of the hydrogen atoms is consistent with these hydrogen bonds.

The noteworthy stability of the $[Mo_4O_{12}{MeC-(NH_2)NO}_2]^{2-}$ ion is illustrated by the various reactions which yield it. Among them, the most unusual is that of $[MoO_2-(acac)_2]$ with MeC(NO)NO⁻; the reduction mechanism is not clear.

Received, 3rd April 1987; Com. 434

References

- 1 M. T. Pope, 'Heteropoly and Isopoly Oxometalates,' Springer, New York, 1983.
- 2 E. M. McCarron and R. L. Harlow, J. Am. Chem. Soc., 1983, 105, 6179.
- 3 R. D. Adams, W. G. Klemperer, and R. S. Liu, J. Chem. Soc., Chem. Commun., 1979, 256.
- 4 V. W. Day, M. F. Fredrich, W. G. Klemperer, and R. S. Liu, J. Am. Chem. Soc., 1979, 101, 491.
- 5 E. M. McCarron, J. F. Whitney, and D. B. Chase, *Inorg. Chem.*, 1984, 23, 3275.
- 6 V. Chilou, P. Gouzerh, Y. Jeannin, and F. Robert, *Inorg. Chim.* Acta, 1987, in the press.
- 7 T. C. Hsieh and J. A. Zubieta, Polyhedron, 1986, 5, 305.
- 8 K. M. Barkigia, L. M. Rajkovic-Blazer, M. T. Pope, E. Prince, and C. O. Quicksall, *Inorg. Chem.*, 1980, **19**, 2531.
- 9 R. Stomberg, L. Trysberg, and I. Larking, *Acta Chem. Scand.*, 1970, 24, 2678.
- 10 Y. Jeannin, J. P. Launay, J. Livage, and A. Nel, *Inorg. Chem.*, 1978, **17**, 374.
- 11 J. P. Launay, Y. Jeannin, and A. Nel, Inorg. Chem., 1983, 22, 277.
- 12 G. P. Khare and R. J. Doedens, Inorg. Chem., 1976, 15, 86.
- 13 S. Aime, G. Gervasio, L. Milone, R. Rossetti, and P. L. Stanghellini, J. Chem. Soc., Chem. Commun., 1976, 370.
- 14 M. B. Hursthouse, R. L. Short, B. Piggot, A. Tucker, and S. F. Wong, Polyhedron, 1986, 5, 2121.
- 15 G. A. Jeffrey, J. R. Ruble, R. K. McMullan, D. J. DeFrees, and J. A. Pople, Acta Crystallogr., Ser. B., 1981, 37, 1381.
- 16 H. Gozlan and C. Riche, Acta Crystallogr., Ser. B., 1976, 32, 1662.
- 17 P. Gouzerh and Y. Jeannin, in preparation.
- 18 J. R. Carruthers and D. J. Watkins, 'CRYSTALS, An Advanced Crystallographic Computer Program,' Chemical Crystallography Laboratory, Oxford, 1986.